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Introduction

Deep neural networks have demonstrated great success in wide range of tasks from computer
vision to natural language processing, speech recognition, game playing and a variety of other
tasks from diverse areas. With the higher complexity of problem at hand, typically the
corresponding number of network parameters and the dataset size grows larger. An example is
the transformer-based language prediction model GPT-3 with 175 billion parameters.

Pruning is a technique of neural network compression by removal of redundant or low
contribution nodes and connections from the network architecture. Similar to the pruning of the
unnecessary branches from a heavy tree, pruning eliminates unnecessary parts inside a dense
neural network graph (see Fig. 1). Pruning can be applied for optimizing the size of and
computations inside a neural network while ensuring that the performance of the model does not
deteriorate in a significant way.

Figure 1: Pruning of a dense neural network results in a sparse model [1]



Figure 2: Granularity of pruned structures [2]

Why Is Pruning Useful?

Pruning becomes particularly relevant when the DNN models are to be deployed in a production
setting under strict latency and resource utilization constraints. Pruning reduces bandwidth as
well as memory foot-print of a neural network. One pertinent question to ask is--why not always
start with a small parameter neural network, rather than trying to reduce the parameters
afterwards? Indeed, algorithms such as cascade correlation follow the same principle. For a
single hidden layer mlp, such bound has been discussed by Huang et al in [3]. So, if we choose
to start with a large parameter neural network with just one hidden layer and later prune it, upper
bound on number of hidden units is already available to create an initial network.

However, it should be noted that it's in general hard to come up with a good bound on the
number of parameters required beforehand as well as design the corresponding architecture that
solves the problem for deep neural networks for arbitrary task. Such bound could be affected by
the diversity and size of input data, the structure of neural network, choice of objective function
as well as the parameter optimization technique used. This is not much a problem in practicality
since we already have several successful architectures for different tasks that we can readily
prune.

Aside from the theoretical considerations, it has been practically observed that having a larger
parameter space generally allows networks to escape out of local minima of the loss function
during training. However, once trained, significant number of parameters can be eliminated due
to redundant functionalities and the network downsized with little to no loss of accuracy. In fact,
in some cases the test accuracy might even increase due to better generalizability resulting from



smaller number of parameters. Thus, it's preferable to start with a larger neural network to learn a
task and later reduce its size with pruning.

Criteria for Pruning

Pruning can either be targeted towards specific neurons or towards the connections, and can
result in different structural changes inside the network graph (see Fig. 2).

Mathematically, pruning can be seen as minimization of following objective:

where M is an unpruned neural network, which is a function of input dataset X and parameters θ,
P is a pruning function applied to M that results in a sparser parameter set θP. Minimization of
the error function E ensures that the performance of a pruned model stays close to the unpruned
one.
Even though the above objective provides a good sense for what we want to achieve, brute-force

searching for the optimal pruning technique is not always feasible due to a possibly large

solution space. LeCun initially came up with idea of Optimal Brain Damage (OBD) based on

Taylor linearization of the error function to get Hessian with respect to parameters that gives a

good pruning criterion. Thisidea was later extended to the work for Optimal Brain Surgeon

(OBS) that could downsize simple XOR network by 90%. However, given the huge parameter

space of modern neural networks, computation of Hessian to identify prunable parameters can be

very slow or computationally infeasible.

Simple practical pruning algorithms for neural networks can be based on one of the following

two criteria:

● Magnitude-based pruning

The idea behind magnitude-based pruning is that norm or magnitude of weight values

with respect to some threshold value is to be used to identify and eliminate the

unnecessary parameters. For instance, prune all the zero weights.



The choice of p ϵ [0, ∞] for suitable lp norm has effect on the type of sparsity of the neurons
resulted by pruning. For instance, use of l0 norm identifies non-zero weights, l1 keeps weights
with larger element-wise absolute values, l2 measures sufficient deviation from mean, and so on.

● Penalty-based pruning

Penalty based methods push certain weight values towards zero during training by either

modification of the loss function or introducing layer-wise constraints into the network.

For eg., LASSO is a popular penalty technique for enforcing sparsity during training with

a constraint on l1 norm of weight values. Group LASSO is an extension of LASSO that

further performs grouping of sparse weights that are simultaneously removable. This

creates a structured pruning that has efficiently executable weights than that are

obtainable with just element-wise unstructured pruning.

Figure 3: (Left) Iterative pruning strategy and (Right) corresponding accuracy vs
computations plot for pruning of VGG-16 model under different criteria [4]

The Benefit of Retraining

Pruning generally eliminates all weights having near zero or redundant contributions with respect

to selected metric. However, such metric may not always align with the desired functionality of



network and can sometimes cause significant drop in accuracy. Retraining the sparse network

post pruning can help improve and restore the network accuracy with respect to original

objective. The evaluation of success of pruning procedure can be done in terms of parameter

count or number of floating-point operations. Pruning with retraining and fine-tuning can be

performed in a single shot or as multi-iteration procedure. In Fig. 3, we observe that a Taylor

criterion-based iterative pruning performs comparatively better than simple magnitude-based

pruning strategy.

Final Comments

In addition to the static pruning methods discussed above, dynamic pruning methods have also

gained a good traction for searching optimal network structures. The motivation behind these has

been that static pruning techniques can cause irrecoverable change on pretrained network and

can lead to sub-optimal network architecture. Instead, identification of redundant parameters

during run-time itself should lead to identification of more efficient light-weight networks.

Different reinforcement learning techniques, as well as differentiable methods, have been put

forward with this aim. In contrast to the static pruning, since the elements to prune is to be

identified at run-time itself while optimizing parameters, in the case of dynamic pruning the

computational overhead can be considerably higher.
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